Friday, January 31, 2020

Blood pressure Essay Example for Free

Blood pressure Essay Blood pressure (BP), sometimes referred to as arterial blood pressure, is the pressureexerted by circulating blood upon the walls of blood vessels, and is one of the principal vital signs. When used without further specification, blood pressure usually refers to thearterial pressure of the systemic circulation. During each heartbeat, blood pressure varies between a maximum (systolic) and a minimum (diastolic) pressure.[1] The blood pressure in the circulation is principally due to the pumping action of the heart.[2] Differences in mean blood pressure are responsible for blood flow from one location to another in the circulation. The rate of mean blood flow depends on the resistance to flow presented by the blood vessels. Mean blood pressure decreases as the circulating blood moves away from the heart through arteries and capillaries due to viscous losses of energy. Mean blood pressure drops over the whole circulation, although most of the fall occurs along the small arteries and arterioles.[3] Gravity affects blood pressure via hydrostatic forces (e.g., during standing) and valves in veins, breathing, and pumping from contraction of skeletal muscles also influence blood pressure in veins.[2] The measurement blood pressure without further specification usually refers to the systemic arterial pressure measured at a persons upper arm and is a measure of the pressure in the brachial artery, major artery in the upper arm. A person’s blood pressure is usually expressed in terms of the systolic pressure over diastolic pressure and is measured in millimetres of mercury (mmHg), for example 120/80. The table on the right shows the classification of blood pressure adopted by the American Heart Association for adults who are 18 years and older.[4] It assumes the values are a result of averaging blood pressure readings measured at two or more visits to the doctor.[6][7] In the UK, blood pressures are usually categorised into three groups: low (90/60 or lower), high (140/90 or higher), and normal (values above 90/60 and below 130/80).[8][9] Normal range of blood pressure While average values for arterial pressure could be computed for any given population, there is often a large variation from person to person; arterial pressure also varies in individuals from moment to moment. Additionally, the average of any given population may have a questionable correlation with its general health; thus the relevance of such average values is equally questionable. However, in a study of 100 human subjects with no known history of hypertension, an average blood pressure of 112/64 mmHg was found,[10] which are currently classified as desirable or normal values. Normal values fluctuate through the 24-hour cycle, with highest readings in the afternoons and lowest readings at night.[11][12] Various factors, such as age and sex influence average values, influence a persons average blood pressure and variations. In children, the normal ranges are lower than for adults and depend on height.[13] As adults age, systolic pressure tends to rise and diastolic tends to fall.[14] In the elderly, blood pressure tends to be above the normal adult range,[15] largely because of reduced flexibility of the arteries. Also, an individuals blood pressure varies with exercise, emotional reactions, sleep, digestion and time of day. Differences between left and right arm blood pressure measurements tend to be random and average to nearly zero if enough measurements are taken. However, in a small percentage of cases there is a consistent difference greater than 10 mmHg which may need further investigation, e.g. for obstructive arterial disease.[16][17] The risk of cardiovascular disease increases progressively above 115/75 mmHg.[18] In the past, hypertension was only diagnosed if secondary signs of high arterial pressure were present, along with a prolonged high systolic pressure reading over several visits. Regarding hypotension, in practice blood pressure is considered too low only if noticeable symptoms are present.[5] Clinical trials demonstrate that people who maintain arterial pressures at the low end of these pressure ranges have much better long term cardiovascular health. The principal medical debate concerns the aggressiveness and relative value of methods used to lower pressures into this range for those who do not maintain such pressure on their own. Elevations, more commonly seen in older people, though often considered normal, are associated with increased morbidity and mortality. Physiology There are many physical factors that influence arterial pressure. Each of these may in turn be influenced by physiological factors, such as diet, exercise, disease, drugs or alcohol, stress, obesity, and so-forth.[20] Some physical factors are: †¢ Volume of fluid or blood volume, the amount of blood that is present in the body. The more blood present in the body, the higher the rate of blood return to the heart and the resulting cardiac output. There is some relationship between dietary salt intake and increased blood volume, potentially resulting in higher arterial pressure, though this varies with the individual and is highly dependent on autonomic nervous system response and the renin-angiotensin system.[21][22][23] †¢ Resistance. In the circulatory system, this is the resistance of the blood vessels. The higher the resistance, the higher the arterial pressure upstream from the resistance to blood flow. Resistance is related to vessel radius (the larger the radius, the lower the resistance), vessel length (the longer the vessel, the higher the resistance), blood viscosity, as well as the smoothness of the blood vessel walls. Smoothness is reduced by the build up of fatty deposits on the arterial walls. Substances called vasoconstrictors can reduce the size of blood vessels, thereby increasing blood pressure. Vasodilators (such as nitroglycerin) increase the size of blood vessels, thereby decreasing arterial pressure. Resistance, and its relation to volumetric flow rate (Q) and pressure difference between the two ends of a vessel are described by Poiseuilles Law. †¢ Viscosity, or thickness of the fluid. If the blood gets thicker, the result is an increase in arterial pressure. Certain medical conditionscan change the viscosity of the blood. For instance, anemia (low red blood cell concentration), reduces viscosity, whereas increased red blood cell concentration increases viscosity. It had been thought that aspirin and related blood thinner drugs decreased the viscosity of blood, but instead studies found[24] that they act by reducing the tendency of the blood to clot. In practice, each individuals autonomic nervous system responds to and regulates all these interacting factors so that, although the above issues are important, the actual arterial pressure response of a given individual varies widely because of both split-second and slow-moving responses of the nervous system and end organs. These responses are very effective in changing the variables and resulting blood pressure from moment to moment. Moreover, blood pressure is the result of cardiac output increased by peripheral resistance: blood pressure = cardiac output Xperipheral resistance. As a result, an abnormal change in blood pressure is often an indication of a problem affecting the hearts output, the blood vessels resistance, or both. Thus, knowing the patients blood pressure is critical to assess any pathology related to output and resistance. Mean arterial pressure The mean arterial pressure (MAP) is the average over a cardiac cycle and is determined by the cardiac output (CO), systemic vascular resistance (SVR), and central venous pressure (CVP),[25] Curve of the arterial pressure during one cardiac cycle The up and down fluctuation of the arterial pressure results from the pulsatile nature of thecardiac output, i.e. the heartbeat. The pulse pressure is determined by the interaction of thestroke volume of the heart, compliance (ability to expand) of the aorta, and the resistance to flow in the arterial tree. By expanding under pressure, the aorta absorbs some of the force of the blood surge from the heart during a heartbeat. In this way, the pulse pressure is reduced from what it would be if the aorta wasnt compliant.[26] The loss of arterial compliance that occurs with aging explains the elevated pulse pressures found in elderly patients. The pulse pressure can be simply calculated from the difference of the measured systolic and diastolic pressures,[26] Arm–leg gradient The arm–leg (blood pressure) gradient is the difference between the blood pressure measured in the arms and that measured in the legs. It is normally less than 10 mmHg,[27] but may be increased in e.g. coarctation of the aorta.[27] Vascular resistance The larger arteries, including all large enough to see without magnification, are conduits with low vascular resistance (assuming no advanced atherosclerotic changes) with high flow rates that generate only small drops in pressure. The smaller arteries and arterioles have higher resistance, and confer the main drop in blood pressure along the circulatory system. Vascular pressure wave Modern physiology developed the concept of the vascular pressure wave (VPW). This wave is created by the heart during the systoleand originates in the ascending aorta. Much faster than the stream of blood itself, it is then transported through the vessel walls to the peripheral arteries. There the pressure wave can be palpated as the peripheral pulse. As the wave is reflected at the peripheral veins, it runs back in a centripetal fashion. When the reflected wave meets the next outbound pressure wave, the pressure inside the vessel rises higher than the pressure in the aorta. This concept explains why the arterial pressure inside the peripheral arteries of the legs and arms is higher than the arterial pressure in the aorta,[28][29][30] and in turn for the higher pressures seen at the ankle compared to the arm with normal ankle brachial pressure index values. Regulation The endogenous regulation of arterial pressure is not completely understood, but the following mechanisms of regulating arterial pressure have been well-characterized: †¢ Baroreceptor reflex: Baroreceptors in the high pressure receptor zones detect changes in arterial pressure. These baroreceptors send signals ultimately to the medulla of the brain stem, specifically to the Rostral ventrolateral medulla (RVLM). The medulla, by way of the autonomic nervous system, adjusts the mean arterial pressure by altering both the force and speed of the hearts contractions, as well as the total peripheral resistance. The most important arterial baroreceptors are located in the left and rightcarotid sinuses and in the aortic arch.[31] †¢ Renin-angiotensin system (RAS): This system is generally known for its long-term adjustment of arterial pressure. This system allows the kidney to compensate for loss in blood volume or drops in arterial pressure by activating an endogenous vasoconstrictorknown as angiotensin II. †¢ Aldosterone release: This steroid hormone is released from the adrenal cortex in response to angiotensin II or high serum potassiumlevels. Aldosterone stimulates sodium retention and potassium excretion by the kidneys. Since sodium is the main ion that determines the amount of fluid in the blood vessels by osmosis, aldosterone will increase fluid retention, and indirectly, arterial pressure. †¢ Baroreceptors in low pressure receptor zones (mainly in the venae cavae and the pulmonary veins, and in the atria) result in feedback by regulating the secretion of antidiuretic hormone (ADH/Vasopressin), renin and aldosterone. The resultant increase inblood volume results an increased cardiac output by the Frank–Starling law of the heart, in turn increasing arterial blood pressure. These different mechanisms are not necessarily independent of each other, as indicated by the link between the RAS and aldosterone release. Currently, the RAS is targeted pharmacologically by ACE inhibitors and angiotensin II receptor antagonists. The aldosterone system is directly targeted by spironolactone, an aldosterone antagonist. The fluid retention may be targeted by diuretics; the antihypertensive effect of diuretics is due to its effect on blood volume. Generally, the baroreceptor reflex is not targeted in hypertensionbecause if blocked, individuals may suffer from orthostatic hypotension and fainting. Measurement A medical student checking blood pressure using a sphygmomanometer and stethoscope. Arterial pressure is most commonly measured via a sphygmomanometer, which historically used the height of a column of mercury to reflect the circulating pressure.[32] Blood pressure values are generally reported in millimetres of mercury (mmHg), though aneroid and electronic devices do not use mercury. For each heartbeat, blood pressure varies between systolic and diastolic pressures. Systolic pressure is peak pressure in the arteries, which occurs near the end of the cardiac cyclewhen the ventricles are contracting. Diastolic pressure is minimum pressure in the arteries, which occurs near the beginning of the cardiac cycle when the ventricles are filled with blood. An example of normal measured values for a resting, healthy adult human is 120 mmHgsystolic and 80 mmHg diastolic (written as 120/80 mmHg, and spoken [in the US and UK] as one-twenty over eighty). Systolic and diastolic arterial blood pressures are not static but undergo natural variations from one heartbeat to another and throughout the day (in a circadian rhythm). They also change in response to stress, nutritional factors, drugs, disease, exercise, and momentarily from standing up. Sometimes the variations are large. Hypertension refers to arterial pressure being abnormally high, as opposed to hypotension, when it is abnormally low. Along with body temperature, respiratory rate, and pulse rate, blood pressure is one of the four main vital signs routinely monitored by medical professionals and healthcare providers.[33] Measuring pressure invasively, by penetrating the arterial wall to take the measurement, is much less common and usually restricted to a hospital setting. Noninvasive The noninvasive auscultatory and oscillometric measurements are simpler and quicker than invasive measurements, require less expertise, have virtually no complications, are less unpleasant and less painful for the patient. However, noninvasive methods may yield somewhat lower accuracy and small systematic differences in numerical results. Noninvasive measurement methods are more commonly used for routine examinations and monitoring. [edit]Palpation A minimum systolic value can be roughly estimated by palpation, most often used in emergency situations, but should be used with caution.[34] It has been estimated that, using 50% percentiles, carotid, femoral and radial pulses are present in patients with a systolic blood pressure 70 mmHg, carotid and femoral pulses alone in patients with systolic blood pressure of 50 mmHg, and only a carotid pulse in patients with a systolic blood pressure of 40 mmHg.[34] A more accurate value of systolic blood pressure can be obtained with a sphygmomanometer and palpating the radial pulse.[35] The diastolic blood pressure cannot be estimated by this method.[36] The American Heart Association recommends that palpation be used to get an estimate before using the auscultatory method. Auscultatory Auscultatory method aneroid sphygmomanometer with stethoscope Mercury manometer The auscultatory method (from the Latin word for listening) uses a stethoscope and asphygmomanometer. This comprises an inflatable (Riva-Rocci) cuff placed around the upperarm at roughly the same vertical height as the heart, attached to a mercury or aneroidmanometer. The mercury manometer, considered the gold standard, measures the height of a column of mercury, giving an absolute result without need for calibration and, consequently, not subject to the errors and drift of calibration which affect other methods. The use of mercury manometers is often required in clinical trials and for the clinical measurement of hypertension in high-risk patients, such as pregnant women. A cuff of appropriate size is fitted smoothly and snugly, then inflated manually by repeatedly squeezing a rubber bulb until the artery is completely occluded. Listening with the stethoscope to the brachial artery at the elbow, the examiner slowly releases the pressure in the cuff. When blood just starts to flow in the artery, the turbulent flow creates a whooshing or pounding (first Korotkoff sound). The pressure at which this sound is first heard is the systolic blood pressure. The cuff pressure is further released until no sound can be heard (fifth Korotkoff sound), at the diastolic arterial pressure. The auscultatory method is the predominant method of clinical measurement.[37] Oscillometric The oscillometric method was first demonstrated in 1876 and involves the observation of oscillations in the sphygmomanometer cuff pressure[38] which are caused by the oscillations of blood flow, i.e., the pulse.[39] The electronic version of this method is sometimes used in long-term measurements and general practice. It uses a sphygmomanometer cuff, like the auscultatory method, but with an electronic pressure sensor (transducer) to observe cuff pressure oscillations, electronics to automatically interpret them, and automatic inflation and deflation of the cuff. The pressure sensor should be calibrated periodically to maintain accuracy. Oscillometric measurement requires less skill than the auscultatory technique and may be suitable for use by untrained staff and for automated patient home monitoring. The cuff is inflated to a pressure initially in excess of the systolic arterial pressure and then reduced to below diastolic pressure over a period of about 30 seconds. When blood flow is nil (cuff pressure exceeding systolic pressure) or unimpeded (cuff pressure below diastolic pressure), cuff pressure will be essentially constant. It is essential that the cuff size is correct: undersized cuffs may yield too high a pressure; oversized cuffs yield too low a pressure. When blood flow is present, but restricted, the cuff pressure, which is monitored by the pressure sensor, will vary periodically in synchrony with the cyclic expansion and contraction of the brachial artery, i.e., it will oscillate. The values of systolic and diastolic pressure are computed, not actually measured from the raw data, using an algorithm; the computed results are displayed. Oscillometric monitors may produce inaccurate readings in patients with heart and circulation problems, which include arterial sclerosis, arrhythmia, preeclampsia, pulsus alternans, and pulsus paradoxus. In practice the different methods do not give identical results; an algorithm and experimentally obtained coefficients are used to adjust the oscillometric results to give readings which match the auscultatory results as well as possible. Some equipment uses computer-aided analysis of the instantaneous arterial pressure waveform to determine the systolic, mean, and diastolic points. Since many oscillometric devices have not been validated, caution must be given as most are not suitable in clinical and acute care settings. The term NIBP, for non-invasive blood pressure, is often used to describe oscillometric monitoring equipment. Continuous noninvasive techniques (CNAP) Continuous Noninvasive Arterial Pressure (CNAP) is the method of measuring arterial blood pressure in real-time without any interruptions and without cannulating the human body. CNAP combines the advantages of the following two clinical â€Å"gold standards†: it measures blood pressure continuously in real-time like the invasive arterial catheter system and it is noninvasive like the standard upper arm sphygmomanometer. Latest developments in this field show promising results in terms of accuracy, ease of use and clinical acceptance. Non-occlusive techniques: the Pulse Wave Velocity (PWV) principle Since the 90s a novel family of techniques based on the so-called Pulse wave velocity (PWV) principle have been developed. These techniques rely on the fact that the velocity at which an arterial pressure pulse travels along the arterial tree depends, among others, on the underlying blood pressure.[40] Accordingly, after a calibration maneuver, these techniques provide indirect estimates of blood pressure by translating PWV values into blood pressure values.[41] The main advantage of these techniques is that it is possible to measure PWV values of a subject continuously (beat-by-beat), without medical supervision, and without the need of inflating brachial cuffs. PWV-based techniques are still in the research domain and are not adapted to clinical settings. White-coat hypertension For some patients, blood pressure measurements taken in a doctors office may not correctly characterize their typical blood pressure.[42] In up to 25% of patients, the office measurement is higher than their typical blood pressure. This type of error is calledwhite-coat hypertension (WCH) and can result from anxiety related to an examination by a health care professional.[43] The misdiagnosis of hypertension for these patients can result in needless and possibly harmful medication. WCH can be reduced (but not eliminated) with automated blood pressure measurements over 15 to 20 minutes in a quiet part of the office or clinic.[44] Debate continues regarding the significance of this effect.[citation needed] Some reactive patients will react to many other stimuli throughout their daily lives and require treatment. In some cases a lower blood pressure reading occurs at the doctors office.[45] Home monitoring Ambulatory blood pressure devices that take readings every half hour throughout the day and night have been used for identifying and mitigating measurement problems like white-coat hypertension. Except for sleep, home monitoring could be used for these purposes instead of ambulatory blood pressure monitoring.[46] Home monitoring may be used to improve hypertension management and to monitor the effects of lifestyle changes and medication related to blood pressure.[6] Compared to ambulatory blood pressure measurements, home monitoring has been found to be an effective and lower cost alternative,[46][47][48] but ambulatory monitoring is more accurate than both clinic and home monitoring in diagnosing hypertension. Ambulatory monitoring is recommended for most patients before the start of antihypertensive drugs.[49] Aside from the white-coat effect, blood pressure readings outside of a clinical setting are usually slightly lower in the majority of people. The studies that looked into the risks from hypertension and the benefits of lowering blood pressure in affected patients were based on readings in a clinical environment. When measuring blood pressure, an accurate reading requires that one not drink coffee, smoke cigarettes, or engage in strenuous exercise for 30 minutes before taking the reading. A full bladder may have a small effect on blood pressure readings; if the urge to urinate arises, one should do so before the reading. For 5 minutes before the reading, one should sit upright in a chair with ones feet flat on the floor and with limbs uncrossed. The blood pressure cuff should always be against bare skin, as readings taken over a shirt sleeve are less accurate. During the reading, the arm that is used should be relaxed and kept at heart level, for example by resting it on a table.[50] Since blood pressure varies throughout the day, measurements intended to monitor changes over longer time frames should be taken at the same time of day to ensure that the readings are comparable. Suitable times are: †¢ immediately after awakening (before washing/dressing and taking breakfast/drink), while the body is still resting, †¢ immediately after finishing work. Automatic self-contained blood pressure monitors are available at reasonable prices, some of which are capable of Korotkoffs measurement in addition to oscillometric methods, enabling irregular heartbeat patients to accurately measure their blood pressure at home. Invasive Arterial blood pressure (BP) is most accurately measured invasively through an arterial line. Invasive arterial pressure measurement with intravascular cannulae involves direct measurement of arterial pressure by placing a cannula needle in an artery (usually radial, femoral,dorsalis pedis or brachial). The cannula must be connected to a sterile, fluid-filled system, which is connected to an electronic pressure transducer. The advantage of this system is that pressure is constantly monitored beat-by-beat, and a waveform (a graph of pressure against time) can be displayed. This invasive technique is regularly employed in human and veterinary intensive care medicine, anesthesiology, and for research purposes. Cannulation for invasive vascular pressure monitoring is infrequently associated with complications such as thrombosis, infection, andbleeding. Patients with invasive arterial monitoring require very close supervision, as there is a danger of severe bleeding if the line becomes disconnected. It is generally reserved for patients where rapid variations in arterial pressure are anticipated. Invasive vascular pressure monitors are pressure monitoring systems designed to acquire pressure information for display and processing. There are a variety of invasive vascular pressure monitors for trauma, critical care, and operating room applications. These include single pressure, dual pressure, and multi-parameter (i.e. pressure / temperature). The monitors can be used for measurement and follow-up of arterial, central venous, pulmonary arterial, left atrial, right atrial, femoral arterial, umbilical venous, umbilical arterial, and intracranial pressures. Fetal blood pressure Further information: Fetal circulation#Blood pressure In pregnancy, it is the fetal heart and not the mothers heart that builds up the fetal blood pressure to drive its blood through the fetal circulation. The blood pressure in the fetal aorta is approximately 30 mmHg at 20 weeks of gestation, and increases to approximately 45 mmHg at 40 weeks of gestation.[51] The average blood pressure for full-term infants: Systolic 65–95 mm Hg Diastolic 30–60 mm Hg[52] Blood pressure is the measurement of force that is applied to the walls of the blood vessels as the heart pumps blood throughout the body.[53] The human circulatory system is 400,000 miles long, and the magnitude of blood pressure is not uniform in all the blood vessels in the human body. The blood pressure is determined by the diameter, flexibility and the amount of blood being pumped through the blood vessel.[53] Blood pressure is also affected by other factors including exercise, stress level, diet and sleep. The average normal blood pressure in the brachial artery, which is the next direct artery from the aorta after the subclavian artery, is 120mmHg/80mmHg. Blood pressure readings are measured in millimeters of mercury (mmHg) using sphygmomanometer. Two pressures are measured and recorded namely as systolic and diastolic pressures. Systolic pressure reading is the first reading, which represents the maximum exerted pressure on the vessels when the heart contracts, while the diastolic pressure, the second reading, represents the minimum pressure in the vessels when the heart relaxes.[54] Other major arteries have similar levels of blood pressure recordings indicating very low disparities among major arteries. The innominate artery, the average reading is 110/70mmHg, the right subclavian artery averages 120/80 and the abdominal aorta is 110/70mmHg.[55] The relatively uniform pressure in the arteries indicate that these blood vessels act as a pressure reservoir for fluids that are transported within them. Pressure drops gradually as blood flows from the major arteries, through the arterioles, the capillaries until blood is pushed up back into the heart via the venules, the veins through the vena cava with the help of the muscles. At any given pressure drop, the flow rate is determined by the resistance to the blood flow. In the arteries, with the absence of diseases, there is very little or no resistance to blood. The vessel diameter is the most principal determinant to control resistance. Compared to other smaller vessels in the body, the artery has a much bigger diameter (4mm), therefore the resistance is low.[55] In addition, flow rate (Q) is also the product of the cross-sectional area of the vessel and the average velocity (Q = AV). Flow rate is directly proportional to the pressure drop in a tube or in this case a vessel. ∆P ÃŽ ± Q. The relationship is further described by Poisseulle’s equation ∆P = 8 µlQ/Ï€r4.[56] As evident in the Poisseulle’s equation, although flow rate is proportional to the pressure drop, there are other factors of blood vessels that contribute towards the difference in pressure drop in bifurcations of blood vessels. These include viscosity, length of the vessel, and radius of the vessel. Factors that determine the flow’s resistance as described by Poiseuille’s relationship: †¢ ∆P: pressure drop/gradient †¢  µ: viscosity †¢ l: length of tube. In the case of vessels with infinitely long lengths, l is replaced with diameter of the vessel. †¢ Q: flow rate of the blood in the vessel †¢ r: radius of the vessel Assuming steady, laminar flow in the vessel, the blood vessels behavior is similar to that of a pipe. For instance if p1 and p2 are pressures are at the ends of the tube, the pressure drop/gradient is:[57] In the arterioles blood pressure is lower than in the major arteries. This is due to bifurcations, which cause a drop in pressure. The more bifurcations, the higher the total cross-sectional area, therefore the pressure across the surface drops. This is why the arterioles have the highest pressure-drop. The pressure drop of the arterioles is the product of flow rate and resistance: ∆P=Q xresistance. The high resistance observed in the arterioles, which factor largely in the ∆P is a result of a smaller radius of about 30  µm.[58] The smaller the radius of a tube, the larger the resistance to fluid flow. Immediately following the arterioles are the capillaries. Following the logic obvserved in the arterioles, we expect the blood pressure to be lower in the capillaries compared to the arterioles. Since pressure is a function of force per unit area, (P = F/A), the larger the surface area, the lesser the pressure when an external force acts on it. Though the radii of the capillaries are very small, the network of capillaries have the largest surface area in the vascular network. They are known to have the largest surface area (485mm) in the human vascular network. The larger the total cross-sectional area, the lower the mean velocity as well as the pressure.[55] Reynold’s number also affects the blood flow in capillaries. Due to its smaller radius and lowest velocity compared to other vessels, the Reynold’s number at the capillaries is very low, resulting in laminar instead of turbulent flow.[59] The Reynold’s number (denoted NR or Re) is a relationship that helps determine the behavior of a fluid in a tube, in this case blood in the vessel. The equation for this dimensionless relationship is written as:[56] †¢ Ï : density of the blood †¢ v: mean velocity of the blood †¢ L: characteristic dimension of the vessel, in this case diameter †¢ ÃŽ ¼: viscosity of blood The Reynold’s number is directly proportional to the velocity and diameter of the tube. Note that NR is directly proportional to the mean velocity as well as the diameter. A Reynold’s number of less than 2300 is laminar fluid flow, which is characterized by constant flow motion, whereas a value of over 4000, is represented as turbulent flow. Turbulent flow is characterized as chaotic and irregular flow.[56] Disorders Disregulation disorders of blood pressure control include high blood pressure, blood pressure that is too low, and blood pressure that shows excessive or maladaptive fluctuation. High Main article: Hypertension Overview of main complications of persistent high blood pressure. Arterial hypertension can be an indicator of other problems and may have long-term adverse effects. Sometimes it can be an acute problem, for examplehypertensive emergency. All levels of arterial pressure put mechanical stress on the arterial walls. Higher pressures increase heart workload and progression of unhealthy tissue growth (atheroma) that develops within the walls of arteries. The higher the pressure, the more stress that is present and the more atheroma tend to progress and the heart muscle tends to thicken, enlarge and become weaker over time. Persistent hypertension is one of the risk factors for strokes, heart attacks,heart failure and arterial aneurysms, and is the leading cause of chronic renal failure. Even moderate elevation of arterial pressure leads to shortened life expectancy. At severely high pressures, mean arterial pressures 50% or more above average, a person can expect to live no more than a few years unless appropriately treated.[60] In the past, most attention was paid to diastolic pressure; but nowadays it is recognised that both high systolic pressure and high pulse pressure (the numerical difference between systolic and diastolic pressures) are also risk factors. In some cases, it appears that a decrease in excessive diastolic pressure can actually increase risk, due probably to the increased difference between systolic and diastolic pressures (see the article on pulse pressure). If systolic blood pressure is elevated (140) with a normal diastolic blood pressure (

Thursday, January 23, 2020

Socialism in George Orwell’s Animal Farm :: Animal Farm Essays

"Animal Farm" by George Orwell is a novel based on the lives of a society of animals living on Animal Farm. Although the title of the book suggests the book is merely about animals, the story is a much more in depth analysis of the human nature and behavior. The animals are used as puppets to illustrate how humans operate, how propaganda was used by early powerful leaders such as Stalin, and the effect this type of leadership had on the behavior of the people. Before reading this fable, I was in many views antagonistic with Orwell’s beliefs of human nature. Orwell believed that although socialism is an ideal, it could never be successfully adopted due to uncontrollable sins of human nature. For example, although Napoleon, the main character, seems at first to be a good leader, he is eventually overcome by greed and soon becomes power-hungry. Orwell’s idea contradicted my understanding of human nature at the time because I was raised with the belief that when a person has good qualities at start, it will continue to be in that manner. Orwell shows us how, if only animals became aware of their strength, we should have no power over them, and that men exploit animals in much the same way as the rich exploit the proletariat. The novel again challenged me. I had different opinions on the behavior of the high class. This brought to me that there are different members of the high class and they differ in their philosophy. There are those members of the high class that help the lower class and those that exploit the lower class in all ways possible. George Orwell does not take view against Socialism but rather against Stalin’s interpretation of the Socialist ideas. In fact Orwell is an advocate of Socialism. One's belief that Socialism could work cannot exist without also believing one major assumption about human nature that we are all capable of perfection. Orwell’s views again contradict my own because I have thought that the possibilities of being perfect are almost impossible.

Wednesday, January 15, 2020

OCR Nationals double award promoting health and well being Essay

According to the above figures given in the above Maslow’s hierarchy of needs, each aspect has been given a position in order of their importance placing the most important one at the bottom. This makes it clear that everything, (regardless the level of their importance) is important to us. There are different ways to keep up the health status up to the standard such as using medication, being on healthy diet, getting enough rest and doing appropriate exercise. After having an observational research on health and its definitions, I would conclude that to keep up appropriate health we should have healthy lifestyle in terms of physical, intellectual, emotional and social aspects. Well-being As this unit is based on promoting health and well-being, it is highly important to have concerns on well-being as well. According to the World Health Organisation, well-being explains our happiness, confidence, physical condition and general outlook of our life. It is about caring ourselves and feeling good. Well-being and living healthily go hand-in-hand. It goes beyond eating a balanced diet and taking regular exercises. It is about being aware about our life and reducing the risks of diseases. Our daily routine could decide the state of our well-being. (Bib. 4)Great Britain is a multi cultural society. The culture is a way, which is followed by a group of people. They eat, dress, behave and believe in the same way. It may be unique to that particular group. It affects their way of life and therefore their health as well. It is very important that the health care sector and the organisations respect beliefs of each culture. For example, a Christian faith group, Jehovah’s Witness urge their follower’s to refuse blood transfusions. (Bib. 12) But according to medical science, blood transfusions can save a person’s life. In another instance, Muslims don’t take pork, although animal flesh is a good source of protein. Proteins are needed for the build up of our muscles. To work properly and to be physically fit, we need to have healthy muscles. Therefore this can affect their physical health. Sometimes, the people chose to be vegetarians or vegans either following their religion or for their personal beliefs. This can lead them to be lack of proteins, as meat, eggs and other animal products are good sources of proteins. As said before, protein is very important even for making hormones. This is vital for our growth. Therefore where the PIES are concerned, it is clear that not taking animal products could also affect a person’s development. Further, this can lead our intellectual development to grow less as well because a good physical health is important to have a good memory and thinking. Another example of how different cultures consider is the fasting practise of Muslims. However, it is not good for our health to get rid of meals because it has been found that this can lead to weight loss, stomach problems including ulceration, dehydration and also changes have been observed in daily lifestyle and mental-health status. (Bib. 5) Apparently, looking at our PIES it is clear from the above disorders that this can also affect both our physical and mental health. Nevertheless, as it is linked to their culture and tradition, they don’t bother much about their health. Further, covering their body by Muslim ladies could lead to vitamin D deficiency as they are not exposed enough to sunlight causing possible rickets. On the other hand, this could be positive to avoid unnecessary exposure to sunlight avoiding risks of skin cancers. So it is clear that the cultural belief and the person’s background can affect their health positively as well. Being a Buddhist, I believe it is not right taking alcohol and drugs for a healthy life. This is another example, which shows how the background of people affects their way of thinking. As different cultures and religions consider health in different ways, it is important that doctors should be aware of cultural beliefs when treating patients. According to the beliefs and places of living of a person may cause them to have less access to medical treatments. For example, a study carried out among the people living in Southern Virginia has found out that they were lacking of medical knowledge and that they distrusted the physicians. They have claimed that most of their people were obsessed and they liked to eat much but not doing exercise. Although it wasn’t said in the study report what foods they ate, I thought that they might be eating too fatty and sugary foods, as they are some causes of obesity. Further, I got to know by reading the study, that these Virginians didn’t discuss health problems with outsiders. It is also said that this may be due to the lack of medical knowledge. I thought this might prevent them from getting suitable care. As the people distrusted the specialist, they do not take medicines prescribed by them. They think that these drugs may cause addiction. In addition, according to the participants in the study, there is a lack of American-born physicians. At the same time, the people in the area were having some concerns in meeting foreign-born physicians. This cultural difference between the patient and the provider has been identified as a barrier, which prevents the patients getting medial care. (Bib. 6) I thought this to be a good example to show the effects of cultural beliefs on people and their health. In third world countries, the people might not be in good hygienic conditions such as less purified water systems, poor housing and air pollution. This could also lead to illnesses and diseases. Some other examples of how different cultures look at their health are the Chinese treatments and the way some cultures treat patients using plants and herbs found from the forests. Although people from different cultures look at health in different ways, each person’s health is alike and will be affected in the same way. Therefore, it is important that we look at it in a positive manner.

Tuesday, January 7, 2020

Police Subculture Essay - 1099 Words

Police Subculture Police subculture is often a culture that is only known to police officers. It is an unwritten and an undocumented set of values and themes that all staff are aware of and can speak to (Jones, 2005). Because the subculture is so prevalent, and what the consequences entail if you defer from it, officers often do not make the proper moral or ethical decisions that should be made (Jones, 2005). The movie â€Å"Training Day† although it is dramatized it shines light on the reality of what happens behind the blue line. The Code of Silence There are many codes within the policing profession, one is the â€Å"code of silence†, also referred to as the â€Å"blue curtain of secrecy† (Jones, 2005). It is referred to this because of the blue†¦show more content†¦Policing agencies are not immune to this, if anything they are more susceptible to having their own informal code, given the situations they deal with day to day (Pollock, 2015). Reuss-Ianni (1993) describe aspects of the â€Å"cop code† as, â€Å"don’t give up another cop†, â€Å"don’t trust the new guy until you have checked him out†, and â€Å"don’t tell anybody else more then they have to know† (Pollock, 2015). These codes were all prevalent themes throughout the movie. For example, Lorenzo’s entourage was very hesitant at the idea of Jake being a part of their mission to steal and rob Roger of all his money. They were hesitant because he was the new guy and hadn’t proven himse lf or his capabilities to them yet (Movie). A real-life example would be trusting a new officer’s capability of being your backup in a situation that would involve force, to help save your life. â€Å"Don’t tell anybody more then they have to know† was also a very prevalent theme in Training day. In almost every situation Lorenza and Jake were in Lorenzo failed to tell him all the details and told him to not tell anyone what had happened unless asked. If the cop code is respected and all officers are compliant with the themes it proves to fellow officers that they are loyal and can be trusted. Stressors In policing there are often two types of police officers, the â€Å"crime fighter† and the â€Å"public servant† (Pollock, 2015). The main goal andShow MoreRelatedRacial Profiling And The Justice System1365 Words   |  6 PagesCanadians, these minorities face a different reality in the encounters with police and the justice system in comparison to their white counterparts. Which raises the question of how equal each citizen really is under the same rules. Therefore, in the essay I argue racial profiling is evident in stop and search practices targeting Blacks in Canada by police officers due to institutional racism and police socialization. In this essay the term racial profiling is understood as: actions that rely on exteriorRead MoreThe Law Enforcement System And The Criminal Justice System Essay1657 Words   |  7 Pagescourt process, and conduct follow up investigations if needed.† In addition, in this essay I will be discussing about, the cause and effect of how the law enforcement system relates to unethical behavior, to police subcultures, and finally, corruption prevention programs. First of allUnethical behavior relates to the Law enforcement system, since according to Martin ( 2011), he states that Research into police corruption offers some understanding of the phenomenon in the hope of rooting out thisRead MorePolice Enforcement And Police Officers Essay1621 Words   |  7 Pages CRJ 132 ESSAY There are various roles in law enforcement today, Patrol Police officers, Detectives, Criminal Investigators, Correctional Officers, Jailers, Sheriffs Security Guards, Private Detectives, Investigators, and various other protective service professionals. I believe they are all important in their own way, each role is crucial to the way our society operates today. I also believe the most important role in law enforcement today, is the community police officers/Patrol officersRead MoreSex Sexuality And Its Effect On Society1458 Words   |  6 Pagesmore so same-sex sexuality, were not often mentioned historically, there are many unknowns and inferencing must be done relatively often. Through the convergence of primary sources, such as court cases and diaries, and secondary sources such as essays and books, it is possible for historians to piece together the history of same-sex sexuality in Canada, and more specifically, Alberta. Although society has progressed to become more accepting and understanding, there are also many things that remainRead MoreYouth Culture And Subculture Developed1313 Words   |  6 PagesYouth culture existed before the Second World War and it did not suddenly appear after 1945. However, it emerged after that time for various reasons that will be explained later on this essay. There were many factors of how youth culture and subculture developed such as: demographic changes, National Service, education and raising the school leaving age, the economic period and music. And these factors also helped shape people’s experiences of them. B Demographic changes were the firstRead MorePrison Socialization And The Correctional Institution1188 Words   |  5 Pagesaction against inmates is usually the primary instrument used by corrections officers to ensure harmony in the prison environment. These actions are vital for correction staff, as this shows the prisoners adaption to the correctional system. This essay will define and distinguish between these two models of imprisonment. Importation Model The term importation model was first coined in the 1960s by Donald Cressey and John Irwin who contested the current indigenous origin/deprivation models by proposingRead MoreESSAY - Examine sociological explanations for the lower rates of recorded crime in rural compared to urban areas1414 Words   |  6 PagesHomework Essay Question – Mrs Young 8th November 2013 ESSAY QUESTION: ‘Examine Sociological explanations for the lower rates of recorded crime in rural compared to urban areas’†¦ A group of sociologists based in Chicago became known as Chicago School, and they argued that the growth of cities produced distinctive neighbourhoods, each with its own characteristic lifestyle. Shaw and McKay applied this perspective to their study of delinquency. Statistics from their study shows that 9.8%Read MoreCriminal Activity And Its Control1851 Words   |  8 PagesWithin the first section of this essay it will explore the ways in which contemporary criminology such as realist and critical challenge popular representations, commonsensical images and explanations of crime and its control. Contemporary criminology uses scientific methodology, creating research data that looks at the larger issue of crime, being the social construct of ever altering societies and cultures. Contemporary criminology contains a wide range of theoretical approaches from which allRead MoreWomen During The World War1394 Words   |  6 Pagesand police on the basis of their sexuality. In the face of this tremendous cultural pressure these women carved their own communities and lives out on the edges of the social order. The pervasive fear of homosexuals in the 1950s bred an era of anti-gay legislation that greatly contributed to the horrific discrimination against lesbians and the development of a lesbian subculture. This fear, known as the Lavender Scare, led to a severe climate of oppression for the emerging lesbian subculture followingRead More`` Drag Kings : Masculinity And Performance `` By Judith Halberstam Essay1749 Words   |  7 Pagesthemselves in order to confound, amaze, and de liver a unique and revealing kind of performance. Although, drag queens have fiercely and fabulously strutted themselves into the limelight, their counterpart, the drag king, has remained a more downplayed subculture, which mainstream society is numbly indifferent to. Many have speculated on how men could more successful pull off being women, while women being men remains, according to society, as unauthentic and purely performative. Author of â€Å"Drag Kings: Masculinity